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ABSTRACT

The propagation of power ./low through a dynamically

loaded beam model l_.'ith 90 degree bends is hn.,estigated ushTg
NASTRAN and McI'OW. The transitio,ing of power ./low

types (axial, torsional, attd ./lexural) is observed throughout

the structure. To get accurate calculations of the torsional

response of beams us#zg NASTRAN, torsional inertia effects
had to be added to the mass matri.v, calculation section of the

program. Also, mass e[fects were included in the calculation

of BAR forces to improve the co,tinuity of power ./low
between elements. The importance of includ#lg all O,pes of

power .[Ioll." in an analysis, rather than only flexural power, is
indicated by' the example. Tt3'ing to intetTnet power [to_'

results that only consMer /lexural components in even a

moderately complex problem will result in incorrect

conclusions concerning the total power �low field.

INTROI)UCT1ON

Methods for calculating power llows in dynamically loaded thaitc

element models using NASTRAN (Rigid Format 8 - Direct Frequency
Response) and McPOW (Mechanical POWer) were developed previously, l

The power flow equations for beam elements derived in that paper included all

forms of dynamic energy propagation: flexural, longitudinal (or axial), and

torsional. The llexural waves were split into shear and moment components.

The majority of procedures clnploycd in other studies (see the list of
references in Hambric l) only consider flexural vibration in their calculations of

power flow. This can be dangerous if an analyst is investigating the energy

propagation characteristics of a complex slruclurc. Though llexural vibralion
is in most cases the dominant response in a dynamically excited beam,

different kinds of propagation will occur in slruclurcs with even a small degtec

of complexily, such as a simplc beam model with 90-degrec bends.
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Such a lnodcl is tested here using a frequency range spanning several

resonances and types of motion. Plots showing tile contributions of the

different fornls of power llow to the total power travelling through the system

are shown, and illusirute the importance of all types of energy propagation to

the power flow method.

To improvc lhc accuracy of both the finitc clement sohltion and lhc

power llow solutioil of the problem, a few modifications were made to

NASTRAN and McP()W. I:irsl, to show lhc importance of torsional powcr

flow, a capability to calcuhite dynamic torsional forces and corresponding

angular velocilics is rcquircd. Thcrcforc, torsional incrlias were added It) lhc

couplcd mass matrix 17ormulntion of the BAR elemcl_t. Also, since lhe bealn

clement force calcuialion algorithm in NASTRAN considers only stiffness

cffccls, mass :rod damping efl'ccls had Io be added to McPOW to modify lhc
cleincnI forces.

MICI'HOI) OLOGY

The procedure for solving for the power llow field in a tinile element

lnodcl using NASTI_AN and McPOW is:

1. Run Rigid Format 8 (l)irect l:rcquency l_,esponse) on a NASTRAN data

deck (using thc Al/l'l:{I_x statements shown in Ref. 1 to output force and

velocity " .......... I blocks to the OUTPUT2 file). Coupled mass formulations

should nlways bc used.

,.'_ l_un McPOW usin,,_ the binnry d;tta in the OUTPUT2 tile as input.

Generall Methods

A typical powcr flow cycle is shown in Fig. 1. The figure shows an

arbilrary slructurc n-iOUlllCd to ii coni_ccting structure by a spring and damper

coupling. A dynamic load is applicd, and energy flows into the structure at lhe

load point. The input powcr then Ilows througl'i the structure along lnultiple

llow paths denoted by arrows whosc lengths represent power flow llaagnitudes.

As the energy llows toward the mourlliria, it is dissipated by material damDin,,

and sound radiation into a surrounding lncdium, and tile flow arrows shorten.

The flow and dissipation processes continue until the remaining energy exits

lhe structure throu,,ho the rnounlii_le_ and l]ows into the connecting structure.

Though only one power entry poinl and one exit point :ire showri in this

drawing,, lnulliplc loads :And inotnliin_s< nlay exist. A classic text which

describes the llow of structure-borne souild is the book by ()rclzler, llcckl, :.llld

I.Jilgar. 2

Thc structural dynainies problem lnny be solved using NASTRAN. The

strticture may be modeled with various element types; motuatings arc modctcd

with scalnr spring, &imping, and mass elements. Constraints and loads arc

dircctly applied. The steady-stale response for the model is solved for a given

cxcilalion frcclucilcy , ;rod the powcr flow variables arc calculatcd.
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Power Flow

Power l)issipation

Pin

Fig. 1. Samplc Power Fh)w Diagram.

Power is defined as tile time-averaged product o1' a force with the ill-

phase component of velocity in tile direction of tile force. For time-harmonic

analysis, where complex mmlbers are used, this calculation may be visualized

as taking the dot product of tile force and velocity phasors. (Thcrc is no factor

1/2 in the following power equations if the assumption thal forces and

velocities are "effective" values rather than amplitudes is made. With this

assumption, consistency is maintained, and there is no mixing ol! effective and

peak quantities ill this formulation.)

Multiplying one complex lmmber by the in-phase part of another

complex number is the same operation as lnultiplying the tirst number by tile

complex conjugate of tile othcr number and faking lhc real part of tile result.

Thcrel'ore a general formula for power flow in a structure is

Power = Real [Vv*l, (1)

where

1: = force, and

v* = complcx conjugalc of velocity.
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Power Flow Equations

The equations for power flows in BAR elements are repeated here. A

diagram of the BAR element and its NASTRAN force output conventions is
shown in l:ig. 2, where Plane 1 is vertical and Plane 2 is horizontal.

Y Vl

a Plane 1 b T

V1

M2t,

<1
V,

z

Plane 2

g,-)

r1 2b

Fig. 2. The BAR Element

Since a beam is a one-dimensional element, energy ltows in only one direction:

in the local x direction, or along the length of the beam. The tolal power ltow
for a beam element is

where

7 * ev* T7_7 M '*"P_ = Real [ - (I,'xVxq-VlVyff-V zq- Ox--M'_Uvq- 1/Yz)],

Fx = axial force,

VI = shear force in y direction,
V2 = shear force in z direction,

T = torsion about x,

M 2 = bending moment about y,
M1 = bending moment about z,

Vi = translational velocities in direction i, and

(2)
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t)i = rotational velocities about axis i.

The negative sign on the result comes from force and displaccmcnt direction
conventions for the element. The negative sign on the M2 term reflects the

NASTRAN force output convention. Ill Fig. 2, Me is shown as positive ill the

opposite sense to 0y. Therefore, M20y is opposite in sign to the other power
flow componcnts.

NASTRAN Modifications

Torsional Inertias

NASTRAN currently does not consider torsional inertias in its beam

element formulation. Therefore, all torsional results (angular displacements

and torques) are based on stiffness only, and are essentially those of a static

problem solution. To remedy this, torsional inertias were added to the

coupled mass formulation. At the point in NASTRAN where the basic

element mass matrix is formed, no consideration is given to beam offsets or

beam orientation; all mass coeflicicnts (as well as stiffness) are calculated ill

the local beam coordinate system.

The torsional mass moment of inertia of a beam is p L J_/2, where p is

the mass density, I, is the beam length, and Jx is the polar area moment of
inertia. In the standard consistent mass matrix for a beam, 3 this value is

broken up into 2/3 and 1/3 components; 2/3 of the value is placed at the

diagonal, and 1/3 is placed at the coupled degree of freedom (the node on the

other end of the beam). The same fractions are used for the Iranslational, or

axial masses. Ill NASTRAN, however, the coupled mass formulation uses an

average of lumped and consistent formulations to reduce error. This average

changes the components to 5/6 and 1/6 of the total wdue. Since these values

are currently used for the axial masses in NASTRAN, lhey were also used for
the torsional inertias.

Element Force Calculations

NASTRAN elelnent forces are currently calculated by multiplying

elelnent stiffness matrices by element displacement vectors. Both damping

and mass effects are ignored. The damping in a stiffness element is actually in

the form of a loss factor, which generates a complex stiffness matrix. All

stiffness terms are multiplied by 1.0 + i_]. For most dynamic analyses,

neglecting the i_l term is acceptable since it is generally small. For a power

flow analysis of a highly reverberant structure, however, ignoring thc loss

factor is disastrous. In a highly reverberant slructure, the force and velocity at

a given point are close to 90 degrees out of phase. Since power flow is defined

as the clot product of these two components, a small change in the phase of

the force has large effects on the calculated element powcrs.

Neglecting the elelnent mass matrices, whose colnponents arc several

orders of magnitude less than those of the stiffness matrices, has less drastic
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effects on the power flow solution, since at low frequencies tile masses will

have little effect on the force calculations (the clement mass matrix is

multiplied by --co 2 to take the second time derivative of the corresponding

displaccments). However, when high frequency analyses are performed on a

model, the --cv 2 multiplying factor becomes morc significant, and neglecting
the mass contributions will cause some error in the force calculations. Errors

in element forces cause errors in element power flow_;.

Including these missing effects in NASTRAN is complicated by the fact

lhat thc element force calculation algorithm splits the probleln inlo real and

imaginary parts. The clement stil'fness matrices are multiplied by the real

paris of the displacement vectors to calculate real force components, and the

process is repeated for the imaginary components. Adding an imaginary term

to the stiffness matrices causes new terms to be generated in the multiplication

(ilnaginary stiffness x imaginary displacement and imaginary stiffness x real

displaccment). There is also no frequency dependence in lhe current

algorithm, since stiffness arc frequellcy independent. Mass matrices, huwcvcr,

musl be multiplied by the --cJ 2 term mentioned above, so they must be

recalculated for every frequency.

To avoid these complications, the clement force calculations were

temporarily moved to McPOW. The elcmcnt mass and complex stiffness
matrices are recalculated on a local element level, and combined with local

element displacements to solve for element forces. A force veclor with 12

entries is the result; shears in the local y and z directions, moments about the

local y and z directions, axial forces, and torques are solved for at each grid

point. In NASTRAN only eight forces are calculated, because only moments

are calculated at both ends of a beam clement. Beam power flows are

therefore calculated al each end of the element using only the forces at that

end and the corresponding grid velocities. The average of the powers at the

ends is takcn to lind an clelnent power flow.

TEST PI{OBLI'_M

Problem Statement

The beam model that was analyzed is shown in Fig. 3. All three

sections have the same cross scction and material properties. Dashpots

(DAMP2 elcments) of value 106 were applicd at the modcl's end in all six

degrees of freedom. A unit load was applied at the top end of the model in

the longitudinal direction (along the - z axis) over a frequency range ol 1 to 250

Hz swept in 1 Hz increments. 'l'he finite element model consists of 152

clemcnts and 153 grid points. (}rid and element immbering starls :.11 the left

end of l,ink 1 and proceeds up to the end of lank 3.

Using the local beam element coordinate systems shown ill Fig. ,3, Ihe

following table of force balances at the corners (Link 3 to I,ink 2, l,ink 2 to

],ink l) was gencrated.
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Fig. 3. Test Problem Geometry
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M2

F×
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The subscripts on tile shears and moments refer to the plane in which tile

forces occur (see Fig. 2). This lable can be used to track Ihc propagation of

power llow through tile slruclure. F'or example, tile longitudinal power input
to Link 3 will travel down thc beam in axial waves to the first bend and

become shear power flow in thc z direction in Link 2. This shear powcr will
interchange wilh momenl power along the beana (the sum of the shear and

moment components is the lolal flexural power flow in tile beana). Any shear

power thal exisls at the lower end of Link 2 will transition 1o more shear
power in Link 1.

141



II
Jill I I ! I I

I I I 4_1 2 2 : !:; . . , i . , Illl I I I I I

GO

I

0

r',.

I

0
,,r--.

CO

I

0

(M) MOI_-IJ_MOd

IIII I I I I I

Ill I I I I I I

cr) O

I
I

O
.-- O

O

d
t£3

O

fN
C,J

O

(::;
O

O

r-.-
T--

O

d
If)
.__ .-_,

-I-

O >.,

::3

O-
¢D
k_

O i,

O
(:3
T--

O

I'--

O

d
t.(3

O

f'4

O

d

r-,

o

r.r_

O

¢.t-.

c-

O

&..

142



Results and Discussion

The computed powcr input curve over tile excitation frequency rangc is

shown ill Fig. 4. The power input peaks correspond to various resonances in

the structure. Most are flexural, but some axial and torsional modes intlucnce

the power input curve. The longitudinal lnodes of Link 3 cause power input

peaks (at 190 tlz and above), as well as the torsional modes of Link l (at 151

I Iz and above).

In this lnodcl, the powcr ttow path is independent of frequency. The

total power must always flow from the input point at the end of Lillk 3 to the

dalnpers at the beginning of lank 1. "l'his simplilies the interpretation of the

results, since the directions of total power flow are establislaed.

Tile types of power llow in a given link are not so well-delincd.

Whether the dominant path in a link is flexural, axial, or torsional, depends on

the motion of the structure. Fig. 5 shows the two most common types of

motion paths for this problem. The displaccmcnt field of l)iagram 1 occurs

most often. The axial load applied to IAnk 3 drives tile entire structure

forward and backward over a frequency cycle. Thc dominant power flow in

Link 3 is axial; lhe dominant power flow in Link 2 is flexural; and torsional

and flexural power Ilows arc dominant in Link 1, since the input load applies

both a torque and bending moment it) the link.

In Diagram 2 of Fig. 5 a different type of motion is shown. The axial

load still drives the upper half of tile structure in the same direction, but tile

lowcr half moves in tile opposite direction. This type of motion is m)t what

one would expect in a static problem, but the dynamic characteristics of tile

structure produce this type of motion in various frcqucncy ranges.

1)ue to this motion path, the axial power llow travelling down Link 3

becomes flexural, torsional, and axial in lank 2. The torsional and axial

components appear because the link is twisted and stretched by the opposite

directions of motion of the two ends. Tile torsional power in Link 2becomcs

flexural power in Plane 1 in l,ink 1, and the axial power in Link 2 turns into

flexural power in Plane 2 in Link 1. The tlexural power in Link 2 becomcs

torsional and flexural power in Link 1 as before (l)iagram 1).

Considering these modes of power transitioning, the power flow plots in

Figs. 6-8 may be interpreted, l:.ach plot shows the contributions of llexural,

torsional, and axial power tlow as a percentage of the total power ltow in tile
center of each link.

Fig. 8 shows the power components in l_ink .3. Since the input power is

in the longitudinal direction, the majority of the power in this link is axial. At

certain frequencies, the percentage of axial power is greater than 100 percent.

The large axial percentage arises because at certain frequencies, reflected

waves carry power in the opposite direction (toward the load). Three llexural

resonances in the structure cause rellcctcd power just before 50 Hz, along with
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Diagram 1 Diagram 2

Fig. 5. Dominant motion paths for test problem

tive others right after 100 Hz. Between 200 and 250 Hz, some flexural and

torsional resonances cause more reflected powers.

Fig. 7 shows the power components in Link 2. The dominan! type of

power is the flexural component in Plane 1, and is denoted by the solid curvc.

This type of power field corresponds to the motion type shown in Diagram I in

Fig. 5. However at certain frequencies, the power flow pattern of Diagram 2
becomes dominant, and axial and torsional power become important. Ill most

cases, the axial power flows forward (away from the load point), and the

torsional power is backward (reflected toward the load point). These

tendencies occur at the same frequencies as the reflected power waves do in

I_,ink 3 (shown in Fig. 8). This behavior indicales that the flexural power ill

Plane 1 and the torsional power cause reflcclcd flexural powers in Planes 2 and
1 respectively in Link 3.

Fig. 6 shows the power distribution in Link 1. In this case, all power
components are positive, implying that the reflected power waves in Links 2

and 3 originate from the joint connecting Links 1 and 2. In Link 1, llexure in

Plane 1 and torsion are the dominant components of power flow. Flexural
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molhm in Plane 2 and axial motion cause power peaks at the same frequencies

observed ill Figs. 7 and 8, indicating ihe type of motion shown in Diagram 2

ill Fig. 5. A torsional mode in Link 1 accounts for the peak in the torsion

curve at 150 Ilz, along wilh an input power peak at the same frequency (see

Fi,, 4').

In spite of lhe large variation in percentages of power types in lhe plots,

all the power curves add up Io 100 percenl, as expected. In addilion, lhe total

power flow in lhe structure al all frequencies is at a maxilnum al lhc load

point, alld smoothly decreases lo a minimum at the connection point to lhe

dampers. The steady decrease in power is due 1o slruchlral damping. The

remaining power is all dissipaled by the connected dampers.

This example illustrales the importance of all types of power

components in a power flow analysis, hnaginc lrying to discern a meaningful

power llow field from only llexural powers in lhis example. The detected

l;OWCrS in I.ink 3, which is adjacent to the input load, are all in lhc oposile

(lircclion, or toward the load. In IJnk 2, Ihe analyst would scc a sudden jump

in power lo values lhat are higher than that of the inpul power. Finally, in

I.ink 1, N_oradic power curves wilh values near lhe inpul power al frequencies
below 10() IIz and values near zero after 100 Hz would be found. Confusion

would surely result, with erroneous conclusions soon following. Difficulties

like lhesc would bc compounded in a real application with some degree of

complcxily.

CONC1AJSIONS

"l'hc modifications madc lo NASTRAN and McPOW are crilical to the

power flow method. Wilhout torsional inertias applied to lhe beam element

mass malrices, any torsional effects in adynamic problem are static. None of

the lorsional power flows present in the example problem would exist, causing

incorrccl lolal power tlow fields. Adding nlass and damping effects lo lhc

clcmcnt force calculation algorithm is also important. In a rcverberanl

structure where forces and velocities are nearly 90 degrees out of phase with

each olher, accurate calculations are necessary to guarantee good power flow

fesulls. A small change in the phase of an element force, caused by neglecting

the material loss factor, could cause large errors in clement power flows.

Also, at higher frequencies, element mass terms can become significant and

affccl lhc elelnent force magnitudes, and hence the element power magniludcs.

The addition of torsional inertia to the beam clement mass matrix

formulation was straight-forward. The addition of damping and mass effecls lo

the clement [orcc calculation roulines, howevcr, was ahnost impossible. In

facl, lhe changes had 1o be made to McPOW instead of NASTRAN. Thc

imp|cmcntation difficulties were duc to lhe way NASTRAN handles complex

analysis: the solutions are broken into real and ilnaginary paris. WherJ the

program was in its formative slages, UNIVAC computers were supported.
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The UNIVAC, unfortunately, had no way of handling double precision

complex arithmetic. Therefore, no complex numbers or FORTRAN complex
functions are used in the element force calculation sections of the prograrn.

With this approach, a simple complex calculation like

[-J [M]e + (1 + i,_)[K]e] {d}e must be split up into four calculations. Also,

since the calculation is frequency-dependent, the NASTRAN element force

subroutines are not currently able to handle it. Since the UNIVAC has a!l but

disappeared from the COSMIC NASTRAN computing arena and most

modern computers support double precision complex arithmetic, perhaps thc

way NASTRAN handles complex problems should be modified.

The importance of including longitudinal and torsional components with

flexural ones in a power flow analysis was shown in the example problem.

Measuring llexural power nlone will not give an accurate indication of the total

power flow field in even a marginally complex problem. In the case of the
example problem, reflected llexural waves actually indicated a reversal of

power flow in the model, whole the direction of flexural power was in the

opposite direction of the input power. Trying to interpret power llow results

that only consider ltexural components will result in incorrect conclusions

concerning the total power l]ow field.
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